数学建模论文范文

“数学建模论文范文”这个词的意思是:一份或一系列的文档,包含了数学建模的解决方案或方法,通常是在特定的数学问题或情境下,通过逻辑推理、建模和计算等步骤,得出解决问题的方案或建议。这些范文可以是其他人已经完成并发表的论文,也可以是作者自己创建的解决方案。它们提供了在数学建模过程中可能遇到的各种问题和情境的示例,以及相应的解决方案或建议,以帮助读者更好地理解和应用数学建模。以下是有关于数学建模论文范文的有关内容,欢迎大家阅读!

数学建模论文范文

数学建模论文范文1

数学建模有利于将数学理论付诸实践应用,在各行业中作用巨大。大学生数学建模教育的实施,也是素质教育创新的重要要求。开展数学建模竞赛,有利于提高大学生创新能力,对提升大学生综合素质也有帮助。研究如何通过大学生数学建模竞赛培养大学生创新能力,具有十分重要的现实价值。

一、通过数学建模竞赛培养大学生创新能力的途径与策略

高校组织开展数学建模比赛,对创新型大学生的选拔机制进行完善,为大学生创新能力的提高提供实战平台。教师不仅要激发学生对数学建模的兴趣,也要培养大学生的创新能力。学校鼓励全体学生共同参与数学建模竞赛,通过竞赛实现大学生各方面能力的培养。竞赛的开展主要分为初期选拔、暑期选拔以及赛前选拔三个阶段。

1.初期选拔阶段。高校于每年的4月开始进行初期选拔的筹备工作,在5月初开始进行动员宣传,采用张贴海报及制作展板等形式进行文件的发布,全校级别的数学建模竞赛于6月份组织开展。随着近些年数学建模竞赛的不断发展,学生对数学建模的兴趣高涨。数学指导组教师一同进行竞赛论文的评审,遵循一定的评审原则,保证评审的合理性、客观性。获奖人数根据参赛总人数进行合理设置,通常约占总人数的50%。经过校级竞赛选拔部分善于创新的学生进行暑期培训。整体而言,数学建模竞赛具有较大的影响,涉及较多的学校与学生,学生从中也可获得较大的好处,对大学生创新能力的培养有利。

2.暑期选拔以及再次选拔阶段。高校通常在8月开始着手参赛学生的建模专题培训,合理制订数学建模专题的培训计划,对竞赛知识内容进行科学编排,保证理论课与实验课课时的均衡安排,使指导教师的教学优势得到发挥。课程组按照大纲的指示,进行年度教学计划的科学制订。教师也可一同进行备课,以全国竞赛出题为中心进行探讨,促进学生竞赛能力的提高。在短期集训课的学习完成后,对参训学生进行再次选拔。此时学生的竞争意识将十分强烈,选拔竞争也十分激烈。

数模指导组教师需仔细考量选拔的结果,一同进行各小组学生论文的评审,善于发现创新型学生,坚持公正平等的原则对待各个参赛学生,最终选出享有全国大学生数学建模竞赛资格的学生,并且对这些学生的组合进行优化。

3.赛前再选拔以及模拟训练阶段。高校在8月下半月进行赛题模拟训练,模拟训练的要求遵循全国赛的标准,频率分析大学生数学建模竞赛与创新能力的培养白一青:本文主要阐述了在数学模型课程的载体作用下,开展数学建模综合实验和数学建模竞赛培训,对培养大学生数学建模竞赛和创新能力进行探究,并提出通过数学建模竞赛提升大学生创新能力的策略。关键词:数学建模竞赛;创新能力;培养为5天一轮。指导教师此时需要在指导工作中投入大量心血与实践,做好学生的指导与点评工作。学生根据全国赛的标准进行论文写作,指导教师共同对学生的作品进行审阅和点评。各小组可选出一名代表作点评,讨论汇报工作,由小组其他成员进行补充。此时学生的讨论将十分激烈,在这个过程中,问题的结果也将逐渐浮现,数学建模理论也逐渐实现提升。

二、数学建模竞赛开展培养大学生创新能力的效果分析

1.大学生参赛积极性高,参赛成绩较为理想。通过以上方法,大学生在数学建模竞赛中的参与十分积极,成绩越来越理想,创新能力也得到阶段性提高。近些年,大学生参赛人数持续上涨,上涨幅度甚至将近20%,学生的参赛成绩也达到新的高度。与此同时,大学生在挑战杯活动中的参与也同样热情高涨。这些学生凭借数学建模竞赛,实现了数学素质与创新能力的提高。

2.大学生创新思维与能力得到有效提高。在数学建模训练的作用下,大学生信息收集与处理的能力得到培养,使学生形成科学的数量观念,能够对事物数量及其变化进行敏锐观察。并且,数学的严谨推导可使学生养成认真、仔细的良好习惯,使学生的逻辑思维能力得到提高,从而思路更加清晰,可以轻松地应对各项事务,使问题能得到有效解决,使数学理论能够付诸实践,从而使大学生的数学素养得到有效提高。

三、结语

总之,大学生数学建模竞赛的开展,对大学生创新能力的培养与提高十分有益,并且能使学生其他素质得到提高,如团队合作能力、竞争能力及表达交流能力等。高校应积极有效地组织和开展数学建模竞赛,使大学生素质教育在此途径中得到发展,促进大学生综合素质的全面提高。

数学建模论文范文2

摘要:人类已进入信息时代,信息化是世界经济和社会发展的大趋势,以网络技术和多媒体技术为核心的信息技术已成为拓展人类能力的创造性工具。信息技术与教学的整合,是普及信息技术教育的关键,是信息技术教学和其它教学双赢的一种教学模式。本文阐述了信息技术与小学数学教学整合的内涵与意义,着眼于信息技术与学科教学的关键点,探讨了信息技术与小学数教学整合的主要模式,并对整合过程中需注意的问题提出了自己的看法。

关键词:信息技术;小学数学;教学整合

一、信息技术与小学数学教学整合的内涵与意义

1.激发了学生学习兴趣,调动了多种感官

传统的教学模式,教师依靠“一块黑板、一支粉笔、一本书”进行说教式的教学,媒体运用单一,学生容易产生疲劳感、乏味感。如何激发学生求知欲,调动其学习积极性,是教学成败的关键所在。动画是小学生最喜闻乐见的艺术形式,设计制作出包含动画的课件最容易激发学生的学习兴趣。例如在上《几分之一》一课时,我们设计了“猪八戒吃桃子”动画。滑稽的人物,优美的音乐,诙谐的解说,成功地营造出了一种乐学氛围,使枯燥的学习变得轻松而易接受,为学生自主有效的学习奠定了基础。它比传统的手段激趣,效果要好得多。通过有趣的动画引入课题,一方面引起学生的兴趣,另一方面为学习新知提供了要思考的问题,诱发了学生探究新知的浓厚兴趣,迫切要求掌握新知的欲望也油然而生。

2.突出了教学重点,突破了教学难点

学生学习一个知识,一般都要经历“感知——理解——积累——运用”这样的一个过程。信息技术在小学数学教学中可以把抽象的概念和不易操作的实验活动过程进行处理,生动、形象地展现在学生面前。如在教学《圆的面积》时,学生对圆的’面积计算公式的推导不易理解。关于圆的面积公式的推导,教材虽然采用实验的方法,把圆分割成16等份,再拼成一个近似的长方形,然后由长方形的面积公式推导出圆面积的计算公式S=2πr。但是,实验过程比较复杂,难于操作,学生不易理解和掌握,再者用圆拼成的近似长方形时,让学生想象出分割的份数越多,拼得的图形就越接近于长方形(渗透了“极限”思想),这对于小学生来讲很难想象,学生所看到的只能是把圆拼成的一个长方形,致使学生对所推导出来的公式的精确性持怀疑的态度。在教学过程中,我们可以充分发挥信息技术辅助教学的优势,利用动态展示圆的面积公式推导过程,使抽象化为具体,化难为易,以达到最佳效果。

信息技术与小学数学教学整合可以弥补传统媒体的不足,突破一些教学上的难点。如教学《角的初步认识》一课时,在讲解角的大小与什么有关时,用传统手段,包括直观操作、投影演示等都很难把要害讲清楚。而通过多媒体计算机可以方便地演示:将两个角平移重叠,将角的两边长短随意改变。学生通过观察动态的过程,小学数学论文很容易地归纳出“角的大小与两边长短无关,而与角两边叉开的大小有关。”

3.提供了大量的信息,增加了教学容量

信息技术与小学数学教学整合具有常规电教媒体的特有功能,并且能综合它们的优点。一节课的时间是有限的,一支粉笔、一块黑板和一张嘴巴的能力也是有限的,它们都已无法满足学生的需求。利用多媒体课件辅助教学,可将以前需要在黑板上抄写的教学内容事先做在课件中,上课时鼠标、键盘轻轻一动,教学内容立即呈现于屏幕,节约了板书的时间;大大增加课堂的容量,丰富教学内容,提高教学效果。在复习课上,利用多媒体课件效果尤为理想。边复习,边进行课内练习、矫正练习、迁移性练习,并在其中加上习题答案,及时进行错误订正,可以大大缩短教师板书时间,一节课下来,学生始终处于积极思考、学习的状态。

4.优化了练习,深化了学生思维

信息技术与小学数学教学整合,可以达到优化练习,从而使学生思维得到进一步的发展。练习是学生理解知识、掌握知识、形成知识、形成技能的基本途径,又是运用知识发展技能的重要手段,它需要有坡度、多角度、多层次的练习巩固所学的知识。练习时可以利用多媒体技术省时、容量大、拓宽思路的特点来强化练习效果,提高练习效率。如教学“元、角、分”的认识后,我们就利用计算机创设“虚拟商店”让学生当售货员与消费者,进行仿真练习。

由于信息技术演示具有“应变”、“重复”的功能,因而这种练习可不断重复,使练习效果不断强化。

二、信息技术与小学数学教学整合的主要模式

信息技术与小学数学教学整合,可以创设有利于学生学习探索与生活紧密结合问题情境和学习环境,引导学生在自主学习和合作交流的活动中分析问题,增进学生对数学的理解和应用数学的信心,逐步养成勇于探索、勇于创新的科学精神。其操作程序如下:

1.创设情境,提出问题——情境的创设,能变抽象为具体,唤起学生丰富的想象,引起学生情感上的反响,激活学生的思维,在课堂教学中利用信息技术进行辅助教学,其形、声、光、色并茂,更易于学生的接受,更能激起学生的学习兴趣。也易于唤起学生创新的“火花”。

2.主动探索,尝试解决——这一过程的设计是让学生主动参与学习过程,通过小组合作、交流,使学生的个性充分得到发展,从而培养学生分析问题和解决问题的能力。

3.归纳思路,提炼方法——学生通过主动探索、交流后,教师接着引导学生归纳反思自己探索解决问题的思路,从而使学生思考形成共识,以完成知识形成条理化、系统化。

4.练习巩固,适当扩展——练习是对新知识的巩固和延伸,是学生实践活动的体现。在教学中可以充分利用信息技术的交互性,设计一些变式练习和一些开放式的练习,以唤起学生创新思维。

三、信息技术与小学数学教学整合需注意的问题

1.不要一味追求信息技术的“技术含量”,忽视先进的教学理念。信息技术与课程整合重在其“实用价值”,并非其技术含量的高低。有的老师认为软件越高级,会用的人越少越好。其实这偏离了信息技术辅助教学的初衷。在课堂教学中起主导作用的是教师,教师教学理念、教学思想的现代化,远胜于技术手段的现代化。教师要认真钻研教育理论,积极探索信息技术在教学应用中的规律,使信息技术在教师的驾驭下发挥最佳作用。

2.注意信息技术与传统工具达成平衡。信息技术的使用为学生学更多更深的数学提供了可能,也为学生更好地理解和应用数学开拓了广阔空间。但是,它不能被用来代替基本的数学活动,如实际观察、直观感知、基本运算、逻辑推理等。因此,应当使信息技术的应用与传统的纸笔运算、逻辑推理、动手操作、画表作图等之间达到一种平衡。

3.要重视学生的情感交流。情感作为非智力因素,是学生健全人格形成的重要方面,因此课堂上要加强生生及师生间的语言交流,建立积极和谐的人际关系,避免出现由传统的“满堂灌”变成了“满机灌”,扼杀了学生的思维活动,抑制了学生创造力的发展,“心灵封闭”现象的产生

总之,信息技术与小学数学教学的整合,无疑是信息时代中占主导地位的课程学习方式,必将成为21世纪学校教育教学的主要方法。因此,我们应当充分挖掘现代教育信息技术的独特优势,扬长避短,努力使之与小学数学课堂教学整合,开创课堂教学的新天地。

数学建模论文范文3

【论文关键词】数学建模创新能力创新思维教学模式

【论文摘要】阐述了数学建模对培养学生创新能力的意义,讨论了如何在数学建模的教学中培养学生的创新思维,探讨了数学建模的教学模式。

1引言

当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。

因此,加强创新精神和创新能力的培养,已是世界各国教育改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重。

一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动。其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模。正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。

2数学建模对培养学生创新能力的意义

高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养。也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。

数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际。数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、科学的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作。数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合。在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等。知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现。实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。

3在数学建模的教学中培养学生的创新思维

创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才。尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用。因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观规律,是研究各种科学技术不可缺少的语言和工具。

而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现。这一过程高度反映了人的创新精神、创造意识和创新能力。

数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法。我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。

数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”。而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维。在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法。

发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举。我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。

逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果。比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini—Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利)。在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型。但若运用逆向思维,从市场需求去预测可能的.盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。

4数学建模教学模式的探索

刚踏入大学校门的大一新生,首先接受的是基础数学教育,虽然这一阶段将决定着学生毕业后能否成为创新型人才,但学校要想培养出高质量的创新型人才,基础的数学教育是以知识传授为主体的教与学的过程,多年来的事实证明,这一过程很难肩负对学生创新能力的培养。随着数学建模与数学建模竞赛这一事物的出现,人们很快发现,数学建模教学,尤其是数学建模竞赛的培训是实现这一目标的一条很好的途径。经过多年来的摸索,我们对数学建模的教学模式做了如下探索。

第一,充分再现数学发现的思维过程。学生学习的数学知识,尽管是前人创造性思维的成果,学生作为学习的主体处于再发现的地位,给学生展示数学发现的思维过程,就是引导学生重走数学知识的发现之路,使得学生的再发现得以顺利完成。而这实质上也是对学生创新思维的一种培养过程。然而这一点常常被许多数学教师所忽视,他们只注重数学知识的传授,而隐去了数学知识的发现过程,这就无形地扼制了学生创新思维的发展。而数学建模的教学却能弥补基础数学教学的这一缺陷,能让学生在数学建模的过程中充分体会数学发现的创造性乐趣,从而培养其创新思维。

第二,更新教学形式。传统的单一满堂灌、填鸭式、保姆式的课堂教学形式,容易养成学生对老师的依赖心理,不利于调动学生的主观能动性,更不利于激发学生的创造性思维。因而要想在培养学生的创新能力方面有所突破,必须打破原有的单一教学模式,探索和尝试一些行之有效的新的教学形式。近几年来,我们根据数学建模的具体要求,有意识的尝试了不同于以往传统的教学模式,将多种不同的教学形式进行了优化组合,力求变以教师为中心为以学生为中心,充分调动学生的主观能动性和思维的积极性,培养创新意识和创新能力。

5我校数学建模的教学模式

我校自1994年第一次组队参加全国大学生数学建模竞赛以来,已走过15年的风风雨雨。15年来,在利用数学建模培养学生创新能力方面,我们不断地反思并总结经验和教训。

经过多年来的反复实践和深入探索,我们以培养和提升学生创新能力为目标,以数学建模选修课和数学建模竞赛培训课为载体激发学生的创新欲望,以少数学生影响并带动大多数学生参与数学建模活动体验创新乐趣,作为我们制定数学建模教学大纲、教学计划、确定教学模式的宗旨。下面介绍我校数学建模的教学模式。

数学建模的教学内容分为两部分:

第一部分:数学建模选修课。该课总课时36小时,由4或5位教师每人2或3次课讲完,每位教师每次课主讲一个数学建模方法方面的专题,专题的讲解以先介绍案例再引出理论或先讲述理论再介绍案例的方式进行,每位教师至少布置一道题目,原则上要求每位学生在选修课学完后须上交一份作业,该作业可以是选做教师布置的某一题,也可以自己找题并求解,以论文形式上交。由于时间的限制,选修课中没有介绍论文写作,所以对学生的作业论文并不做严格要求,只注重其内容中是否有闪光的创意之处,并作为后续选拔数学建模竞赛选手的一个重要依据。

第二部分:数学建模竞赛培训课。培训课分三个阶段进行。第一阶段是软件和数学建模方法的培训。软件培训主要介绍的MatLab、Spss、Lingo的使用和基本操作;数学建模方法包括:最优化方法建模、微分方程建模、数理统计方法建模、层次分析法建模、网络图的方法建模、神经网络建模、模糊数学建模、遗传算法建模、概率仿真建模。第二阶段是专题培训。首先从历年全国大学生数学建模竞赛题目中选出9个分为3组,然后由3位多年来的资深指导教师讲解如何审题、破题;如何查找资料、整理资料;如何分析问题、建立模型;如何分析并寻找合适的算法并对模型进行求解;如何对模型求解结果进行分析并加以修改或改进;最后告诉学生如何对自己所做的工作加以总结并写成一篇规范的科技论文。第三阶段是模拟竞赛。给定三个题目,由各参选队任选一题,要求按全国大学生数学建模竞赛的所有规则进行模拟竞赛。三天后各队提交一篇论文,最后选定其中最好的10个队参加全国大学生数学建模竞赛。

参考文献

[1]谢云荪,成孝予,钟守铭。转变教育思想提高数学素质培养创造性人才[J]。工科数学,1997,13(6):132—136。

[2]傅英定,成孝予,彭年斌等。转变教育观念培养学生创造性思维能力的研究与实践。电子高等教育的理论与实践[M]。成都:电子科技大学出版社,2000:181—184。

[3]安正玉,邓正隆。本科教学应突出创造能力的培养[J]。高等科教管理,1997(2):43—46。

[4]李心灿。在高等数学的教学中培养学生创造性思维的一些实践与思考[J]。工科数学,1999,15(6):35—41。

[5]韩中庚等。数学建模竞赛—获奖论文精选与点评[M]。北京:科学出版社2007:201—216。

[6]张仁丽,李捷飞,邱霆。MS网点的合理布局[J]。工程数学学报2004,21(7)29—35。

数学建模论文范文4

随着社会进步、科技创新和经济产业结构的不断调整,我国对高素质高技能应用型人才的需求正在不断扩大,高等职业教育的高规格人才培养显得尤其重要。社会上各行各业的工作人员,需要善于运用数学知识和数学思维方法来解决实际问题,方能为公司赢得经济效益和社会效益。面临新教育态势的压力,面对数学基础薄弱的学生,如何在有限教学期限内快速提升高职数学课的教学品质,成为高职高等数学教学改革的焦点。

一、高等职业教育数学课教学现状与分析

经过查阅大量文献资料、学生学情调研和教师座谈研讨,可以将目前高等职业教育数学课教学现状归因为课程特点、教师和学生三个方面。

1.数学课的特点。数学是一门与现实世界紧密联系的科学语言和基础的自然学科,其形式极为抽象。学生学到数学概念、方法和结论,并未掌握数学学科精髓,未使数学成为解决实际问题的利器。

2.教师方面。课堂上,教师卖力的教授“有用”的理论和方法,但学生学得吃力且效果不佳。现在,部分教师将实际生活中的鲜活例子融入数学课的教授,打破了数学教学体系和内容自我封闭的僵局,但有些教师将“数学教育是一种素质教育”阻碍为抽象、深奥的课程,严重挫伤了学生学习的积极性。

3.学生方面。就高职生学情而言,生源大多来自高考第五批等录取批次,普遍不晓得数学理性思维对人思维能力培养的重要性,高职生学习目标不明确,学习习惯尚未养成,学习动力不足。此外,面对大量抽象符号和逻辑推理,形象思维强的高职生极易产生抵触心理。上述分析表明,要想实现“数学教育本质上是一种素质教育,数学的教学不能完全和外部世界隔离开来”,就需要改变数学教育按部就班的静态教学现状,创新教学模式,激发学生的主体参与意识,方能形成生动、活泼、有趣的数学课堂。

二、数学建模在高等职业教育人才培养过程中的意义和作用

从公元前3世纪的欧几里得几何,开普勒的行星运动三大规律到近代的流体力学等重要方程,数学建模的悠久历史可见一斑。

1.数学建模的桥梁作用。随着大数据时代的到来,大量数据爆炸性的`涌入银行、超市、宾馆、机场的计算机系统,都需要进行归纳整理、去伪存真、分析和汇总。因此,需要在实际问题和数学方法两者之间架设一个桥梁,这个桥梁就是数学模型。

2.数学建模思想融入高职数学课堂的意义。鉴于高等职业教育数学课教学现状与分析,结合数学建模进入高等院校数学课堂时机的日渐成熟,以及高等职业教育旨在培养高职生如何“用数学”而非“算数学”的目标,将数学建模思想融入高职数学课堂有着积极肯定的意义。

(1)时机成熟。随着大型快速计算机技术及数学软件的快速发展,早期大型水坝的应力计算、航空发动机的涡轮叶片设计等数学模型中的数学问题迎刃而解,数学建模与科学计算的完美结合成为数学科学技术转化的主要途径。计量经济学、人口控制论等新兴的交叉学科为数学建模提供了广阔的应用新天地。

(2)目标明确。数学建模的切入搭建了数学和外部世界的桥梁,解开了数学课堂教学的困境,让高职生以数学为工具去分析、解决现实生活中实际问题的目标切实可行。面对工程技术、经济管理和社会生活等领域中的实际问题,拥有敏锐洞察力的高职生面对现实问题的挑战,主动好奇的参与到资料收集、调查研究过程中来,能够摆脱惯性思维模式,敢于向传统知识挑战,尝试多样解题方式,不仅激发了学习动机,提升了数学知识水平,更有助于学生创新精神和能力的培养,让其在体会数学建模魅力和实用性的同时,渗透数学应用能力。

三、数学建模在高等数学教学中的应用实践

学生走上工作岗位后,无形中会利用数学建模思想来解决实际问题。那么,如何有效的将数学建模“植入”高数课程教学,则需要一系列科学合理有序的教学改革方可取得成效。

(1)融入数学建模思想的高职特色教材。作为教学载体,高职数学教材应从应用性职业岗位需求出发,以专业为服务对象,以实践操作为重点,以能力培养为本位,以素质培养为目的撰写情境式案例驱动的高职特色教材。

(2)构建服务专业的高职数学教学模式。以学校专业需求为服务出发点,制定专业特色鲜明的数学课程教学新体系,搭建课程的“公有”模块和“选学”模块,加强专业针对性。与服务专业类似,对于不同年级、不同数学基础学生的需求,提供个性化、分层化、系列化的教学内容,显得尤为关键。

(3)培养数学应用意识的案例教学方法。历届全国大学生数学建模竞赛参赛数量和规模的扩张使我们懂得:以热点案例出发,能够激发学生的求知欲,在求解过程中自然引出系列数学知识点,通过数学建模,让学生体会数学是刻画现实世界的数学模型,品味数学乐趣,趣化学习过程,强化数学知识应用意识,树立学生主体意识并培养学生创新意识和能力。

(4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。

(5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。

四、数学建模在高等数学教学中的实践效果

自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。

五、结语

将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。

数学建模论文范文5

1、高职数学教学存在的问题

高职院校目前在高等数学课程教学过程中只注重理论学习,学生处于被动接受状态,参与度低。忽略了用数学解决实际问题的能力的培养,缺失了应用性。教师在高等数学教学过程中往往采用满堂灌,填鸭式的教学方式,学生只有大量重复的机械训练,才能掌握一些基础知识,套用现成公式做一些计算。教师的这种教学方式大大的影响了学生的学习兴趣,对数学学习长生厌恶情绪,学生学习的主观能动性也受到影响。另外,高等数学课程教学过程教学模式落后,缺少多样化,不能适应不同专业学生的要求。学生在解决实际问题时思维僵化,无从下手。为了解决这一问题,在高职数学教学中融入数学建模思想显得尤为重要。

2、数学建模教学要以学生为主体,注重综合素质培养

随着科学技术的发展,传统的教学手段也发生了变化。现代的要改变传统的教学模式,须以学生为主体,突出学生的主体地位,使他们成为课堂教学活动的主角,并积极对他们进行引导,让他们发现问题、提出问题,对教堂中的问题积极进行探索,主动思考,增强学习的能动性。由于我国教育模式一直为应试教育,学生在学习过程中只是被动的接受知识,独立思考能力和动手能力较差,并且应用意识薄弱。所以,在教学过程若想实现学生的主体地位,教师必须要培养他们学习的主观能动性。此外,不论在课堂上或者是课外教师要充分尊重学生的个人意见,并适当的给予鼓励,不要轻易否定他们思考问题的方式。在学生发表自己的意见之后,教师对他们进行表扬,鼓励他们善于思考、勇于提问和辩论,让他们始终处于主动学习的状态,使他们成为教学实践活动的主体的。在数学建模教学过程中,要对学生进行全方面的培养,既培养他们应用所学的数学知识的解决实际问题的能力,又要培养他们的综合素质,使他们具有强烈的求知欲、坚强的意志、宽广的兴趣、坚定不移的信念及积极主动进取的品质。

在实际的教学过程中,还可以引入竞争机制,对他们进行分组然后进行讨论或者是竞赛,通过这样的方式既可以增加他们之间的同学友情,又可以让他们共同进步。每组学生还可以布置一些比较难的题目,他们合作解决问题,最终完成题目的解答。在解决问题过程中,让他们意识到创新的价值和合作的重要性,从而培养他们的创新精神和团结协作精神。另外,当今学生的薄弱方面主要是语言能力及表达能力,所以对他们进行特定的培养,提高他们这两方面的能力。在教学过程中,教师要尽量给予学生更多的机会进行语言表达,包括表述自己对问题的认识和解题思路等,从而完成数学建模论文。在训练他们语言表达能力的过程中,教师要有耐心,在语言的准确性、逻辑性、简洁性等方面及时进行指导和纠正错误,从而提高他们的语言表达能力。

3、教师采用多媒体教学手段,提高教学效果

教师在数学建模教学过程中,教学方法要由传统的黑板加粉笔转化为利用多媒体教学,以此来培养学生的应用能力,也提高教学效果。多媒体教学可以包含大量信息,可以直观形象的呈现教学内容,学生的学习兴趣和热情也得到很大程度的提高。采用多媒体教学手段,增加了师生之间的互动性,课程教学过程变得顺利,授课速度变快,教学效果也变得更好。在数学建模教学过程中为了实现更好的教学目标和教学效果,采用大量贴近生活的案例进行数学建模教学的。

4、开展数学建模竞赛,培养应用型人才

近几年来,全国高职院校开展数学建模竞赛成为大学生最重要的课外科技活动。大学生通过竞赛,可以提高查阅收集资料的自学能力,可以运用所学的数学知识来解决实际问题,提高了自身运用计算机解决数学模型问题的能力,使学生的竞争意识和探索研究精神增强的,为成为全面性的高技能应用型人才打下基础。在竞赛活动中,教师对学生进行培训指导的同时也有助于自我提高各方面能力。高职数学教师指导数学建模竞赛可以改变其缺乏研究主动性的现状,可以摒弃老旧的知识学习。有利于开展理论联系实际的数学教学模式,对高职数学教学改革创新有很大的推动作用。

5、总结

在高职数学教学中融入数学建模思想,教师要将学生实际生活中的问题引导到日常数学教学中,让学生自己主动思考,并自己根据所学的知识进行数学模型的构造,以此来解决实际问题,在这个过程中学生真正掌握所学知识。高职院校数学建模竞赛目前还不完善,要大力推广,不断完善。高职数学教学中融入数学建模思想,对培养高技能应用型人才和高职数学教学改革都将产生深远影响。

数学建模论文范文6

各位老师,下午好!我叫XXX,是20xx级**班的学生,我的论文题目是《数学建模教学培养高中生创造性思维能力的实验研究》,论文是在钟育彬导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。

首先,我想谈谈这个毕业论文设计的目的及意义。

在数学教学中培养学生的创造性思维能力是必要的和必需的。如何在数学教学中培养学生的创造性思维能力,是数学教育的重大课题。培养与训练学生的创造性思维能力并不是高不可攀的,而是能够在数学教学中脚踏实地做好的。数学教学中培养学生的创造性思维能力可以让学生凭借数学专业领域的知识经验,不断深化与发展,逐渐有量变到质变,向较深层次跳跃,以便为以后的发展打好基础。

数学建模法是研究数学的基本方法之一,数学模型的建构自身就是一个创新的过程,进行数学建模教学不仅能够使学生构建数学知识基础,更是让学生进行创造性思维培养的重要途径和手段,是培养学生创造性思维能力的重要方法,对学生形成数学素养具有重要作用。

数学建模成为培养学生创造性思维能力的有效途径之一。事实上,我国的一些教育工作者在这一领域已经做了初步的研究工作,但是这些研究大多局限于理论的探讨,而对于数学建模与创造性思维能力的关系,特别是如何通过数学建模教学培养高中生的创造性思维能力方面的研究还很少,并且大都不够深入,不够系统,研究结论缺少实证研究的有力支持。

本文尝试开展实验研究去探讨数学建模与高中生创造性思维能力之间的关系,并做出假设:数学建模教学有利于培养高中生的创造性思维能力。本文通过验证假设目的是证明数学建模教学培养高中生创造性思维能力的有效性,从而给广大高中数学教师一定的教学启示,推动他们积极开展数学建模教学,培养学生的创造性思维能力,为加快培养创造性人才做出贡献。

其次,我想谈谈这篇论文的结构和主要内容。

基于以上问题和现状,本文尝试开展实验研究去探讨数学建模与高中生创造性思维能力之间的关系,并做出假设:数学建模教学有利于培养高中生的创造性思维能力。

首先,本文介绍了研究背景,研究目的和意义,其次,综述了关于创造性思维能力和数学建模的理论基础,探讨了数学建模教学培养高中生创造性思维能力的教学思路,接着进一步开展了为期十六周的实验研究。在一所普通高中的二年级中选择两个平行班作为实验班和控制班。作者在实验班开展数学建模教学,而在控制班仍然实施传统数学教学。教学实验前对学生的数学建模能力和创造性思维能力测试,确保两个班无明显差异。实验后对学生的数学建模能力和创造性思维能力测试,开展数据分析并对结果进行分析与讨论,研究证明了实验班学生的创造性思维能力有了明显的提高。研究表明,数学建模教学有利于培养高中学生的创造性思维能力。最后,指出了本研究的主要结论,提供了关于数学建模培养高中生创造性思维能力的一些教学启示,同时对于本研究的局限性做了一一说明。

最后,我想谈谈这篇论文存在的不足。

这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

谢谢!

数学建模论文范文7

春回大地万物复苏,爸爸妈妈带我去游园;一阵阵大风卷来漫天黄沙,吹散了我们的游兴。

我们正要打到回府时,看到在一条刚刚竣工的人行甬道上围拢着许多人,只听到他们不住的在称赞着什么。禁不住好奇心的诱惑,我也凑了过去。哎?这是在干什么?几名工作人员不断向路面冲水,可水很快就被“喝光”了,没有任何积水现象。可旁边路面上的水流的到处都是。我仔细观察了一下,不会“喝水”的路面就是普通的水泥路。会“喝水”的路面比沥青路面粗糙一些,“皮肤”表面颗粒大一些,有点儿象我们吃的“萨其玛”。

“老爸,这叫喝水路吗?”我的这句话逗乐了一边的几位工作人员。一位叔叔告诉我,这叫“透水混凝土路面”

回到家,通过查询我知道传统沥青路面因渗水效果差给城市生态环境带来了许多付面影响。水分难以下渗,降水很快成为地表径流白白流走,地下水位逐年下降,干旱日益严重;地表温度、湿度的调节能力差,雨水蒸发快,地面易干燥,扬尘污染严重。透水路面能大大降低这些城市“热岛效应”,因为透水混凝土路面对雨水回收率达到89%,只有10%左右(此数据来自北京市市政工程研究院)的降水会被蒸发。您知道吗?近几年北京的地下水层每年以1米左右的速度下降,(此数据电话咨询北京水务局宣传处)这是一个多么可怕的数字啊!

下面让我们以北京为例,

北京中型降雨量每小时2.8—8mm(电话咨询国家气象局),让我们以5mm,20%蒸发率,80%回收率为例,算一下透水路面会回收多少降水。

1平方千米=1000平方米,5mm=0.005m;

1000*0.005=5立方米=5吨

以西城区为例24.7平方千米=24700平方米

降雨量:24700*0.005=123.5立方米=123.5吨:

蒸发量:123.5*20%=24.7立方米=24.7吨

回收量:123.5*80%=98.8立方米=98.8吨

20xx年北京年降雨量为480.6mm左右(此数据电话咨询国家气象局),如果按10%的面积铺设透水路面来计算,将会有近646249吨的降水被重复利用或渗入地下提高地下水位。

众所周知,我国是一个缺水大国,特别是西北部地区;雨天一身泥,晴天沙漫天情况严重。20xx年,我国北方大面积的干旱,不少地区土地因缺水呈龟裂状;南方的暴雨造成城市内涝给环境带来危害、生活的不便值得我们深深的思考:经济的发展和城市的建设都要在环保的基础上,用科学的力量与技术发展强大我们的祖国。

国家正在大力提倡节能减排,我们应做的是低碳生活;人走灯灭会节约一点电,随手关水能节约一点水,少开一天车,少用一点一次性用品。一人节约一点儿,人人做到,十三亿人又能节约多少?数学是一种没有国界的语言,生活中处处有数学,让我们用数学的眼光观察发现生活。

数学建模论文范文8

走美杯”是”走进美妙的数学花园”的简称。

“走进美妙的数学花园”中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届”走进美妙的数学花园”中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。”走进美妙的数学花园”中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过”趣味数学解题技能展示”、”数学建模小论文答辩”、”数学益智游戏”、”团体对抗赛”等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。著名数学家陈省身先生两次为同学们亲笔题词”数学好玩”和”走进美妙的数学花园”,大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从”学数学”到”用数学”过程的转变,从而进一步推动我国数学文化的传播与普及。

“走美”活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

1、活动对象

全国各地小学三年级至初中二年级学生

2、总成绩计算

总成绩=笔试成绩x70%+数学小论文x30%

笔试获奖率:

一等奖5%,二等奖10%,三等奖15%。

3、笔试时间

每年3月上、中旬。

报名截止时间:每年12月底。

走美杯比赛流程

1、全国组委会下发通知,各地组委会开始组织工作

2、学生到当地组委会报名,填写《报名表》

3、各地组委会将报名学生名单全部汇总至全国组委会

4、全国”走进美妙的数学花园”趣味数学解题技能展示初赛(全国统一笔试)

5、学生撰写数学建模小论文

6、全国组委会公布初赛获奖名单并颁发获奖证书

7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

8、各地按照组委会要求提交数学建模小论文

9、前各地组委会上报参加全国总论坛学生名单

10、全国总论坛和表彰活动

数学建模论文范文9

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[J]。齐齐哈尔师范高等专科学校学报,20xx(02):119—120。

[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[J]。教育实践与改革,20xx(04):177—178,189。

[3]杨四香。浅析高等数学教学中数学建模思想的渗透[J]。长春教育学院学报,20xx(30):89,95。

[4]刘合财。在高等数学教学中融入数学建模思想[J]。贵阳学院学报,20xx(03):63—65。

感谢您花时间阅读本文。如果您觉得数学建模论文范文这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

本站内容均为网友上传分享,本站仅负责分类整理,如有任何问题可联系我们(点这里联系)反馈。

(0)
上一篇 2023年11月4日 上午12:02
下一篇 2023年11月4日 上午12:03

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注